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a b s t r a c t

The problem of the optimal control of a rigid body moving along a rough horizontal plane due to motion
of two internal masses is solved. One of the masses moves horizontally parallel to the line of motion of
the main body, while the other mass moves in the vertical direction. Such a mechanical system models a
vibration-driven robot–a mobile device able to move in a resistive medium without special propellers (e.g.,
wheels, legs or caterpillars). Periodic motions are constructed for the internal masses to ensure velocity-
periodic motion of the main body with maximum average velocity, provided that the period is fixed and the
magnitudes of the accelerations of the internal masses relative to the main body do not exceed prescribed
limits. Based on the optimal solution obtained for a fixed period without any constraints imposed on
the amplitudes of vibration of the internal masses, a suboptimal solution that takes such constraints into
account is constructed.

© 2008 Elsevier Ltd. All rights reserved.

Mobile mechanisms, which move as a result of the motion of internal masses, with the main body being in direct contact with the
environment, have a number of advantages over conventional vehicles. They are simple in design and their bodies can be made hermetic,
without protruding components. This enables such devices to be used in a severely restricted space (for example, in narrow tubes) and in
“vulnerable” media, for example, inside a human body to deliver a drug or a diagnostic sensor to an affected area. Li, Furuta, and Chernousko
(Ref. 1) have mentioned the possibility of using such microrobots for diagnosing diseases of the digestive tract. Such mechanisms can be
fixed in a prescribed position with a high degree of accuracy (∼ 10−8 m),2 which enables them to be used in high-precision positioning
units in electron and tunnel microscopes, as well as in micro- and nanotechnology equipment. A similar locomotion principle is apparently
inherent in some living creatures that do not have extremities (e.g., worms or snakes) and move by redistributing mass along their bodies.
Mechanical systems of this type can serve as models for verifying this conjecture and studying the features of motion specific to these
creatures. Such models have been constructed and investigated by a number of authors (see, e.g., Refs. 3–6).

Sometimes, automatic vehicles, moving by means of the motion of internal masses are called vibration-driven robots, since in the basic
operating mode, the internal masses of such systems usually perform periodic vibrations.

Chernousko (Refs. 7,8) was the first to formulate the problem of the optimal control of the motion of a body with movable internal
masses. He considered the rectilinear motion of a rigid body with one movable internal mass along a rough horizontal plane. The internal
mass was allowed to move within fixed limits along a line parallel to the line of motion of the main body. Coulomb friction was assumed
to act between the plane and the body. Periodic control modes were constructed for the relative motion of the internal mass to provide
velocity-periodic motion of the main body such that the body moves through the same distance in the prescribed direction in each period.
It was assumed that, at the beginning and end of each period, the velocity of the main body is equal to zero and the internal mass is
located in its extreme left-hand position and also has zero velocity. Velocity-controlled and acceleration-controlled modes of motion were
considered for the internal mass. In the first case, the internal mass moves with constant velocity, different for motion in the desired
direction of motion of the main body and for motion in the opposite direction. The second mode implies for each period three intervals in
which the relative acceleration of the internal mass is constant. For both modes, the optimal parameters for which the average velocity of
the main body is a maximum were determined.
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The average velocity of the steady motion sustained by periodic motion of the internal masses is one of the basic operating characteristics
of vibration-driven robots, and the maximization of this velocity is an important problem for programming control modes for such systems.

Figurina (Ref. 9) has constructed an optimal control for the velocity-periodic motion of the mechanical system considered previously
which maximizes the displacement of the main body for a fixed period and, hence, the average velocity over that period. The acceleration
of the internal mass relative to the main body is used as the control variable. The magnitude of this acceleration is constrained. Without
loss of generality, the velocity of the main body at the beginning and the end of the period is assumed to be equal to zero. The motion of
the internal mass is subjected only to the periodicity condition. The constraint on the vibration amplitude for the internal mass, as well as
the requirement for the relative velocity of the internal mass to be equal to zero at the beginning and end of the vibration period, when
the velocity of the main body is zero, are not imposed. In addition, no constraints are imposed on the structure of the optimal control (e.g.,
bang-bang character or a specified number of switching instants). For such a statement, the average velocity of the main body of the system
and the amplitude of relative vibrations of the internal mass turn out to be monitonically increasing functions of the vibration period and
the maximum magnitude allowed for the relative acceleration of the internal mass. By changing the period, it is possible to provide a
prescribed amplitude for the vibration of the internal mass. However, the question of the optimality (in the sense of the maximization
of the average velocity) of the solution constructed in this way for the case when the period is free but the vibration amplitude of the
internal mass is constrained remains open. The important fact has been established that by increasing the maximum magnitude allowed
for the relative acceleration of the internal mass one can provide any prescribed average velocity of the main body for a fixed amplitude
of vibration of the internal mass. This is not the case for control modes that prescribe that the velocity of the main body and the relative
velocity of the internal mass should vanish simultaneously at the beginning and end of the period (Refs. 7,8).

The control of the motion of the internal masses of a vibration-driven robot produces a controlled change in the force of friction between
the robot’s body and the supporting surface, which enables the motion of the body to be controlled. The magnitude of the dry friction
force acting on the body depends both on the sum of the other forces acting on the body in the direction of its motion and the normal
reaction force of the supporting surface. If the internal masses move along the line of motion of the body, the normal reaction force does not
change. Therefore, the normal reaction is uncontrolled in the systems described previously (Refs. 7–9). To enable the normal reaction to be
controllable it is necessary for the internal masses to be allowed to move in a direction perpendicular to the supporting surface. Bolotnik
et al. (Ref. 10) considered the rectilinear motion of a model of a vibration-driven robot with two internal masses along a rough horizontal
plane. One of the internal masses moves relative to the body along its line of motion, whereas the other mass moves along the vertical,
which makes it possible to influence the normal reaction of the supporting surface. Both masses perform harmonic vibrations that have
the same frequency but are shifted in phase. It was shown that by controlling the phase shift and the frequency of the vibrations of the
internal masses one can change the direction of motion of the body and the average velocity of the steady (velocity-periodic) motion of
the robot. The optimal value of the phase shift, for which the magnitude of the average velocity is a maximum was found. An approximate
expression for the average velocity of the steady motion was obtained for the case of a small coefficient of friction between the robot’s
body and the supporting plane. This expression enabled the dependence of this velocity on the parameters of the vibrations of the internal
masses to be analyzed. It was established that in this case, the optimal phase shift between the vertical and horizontal vibrations is close
to �/2. This fact justifies the use of an unblance vibration exciter as the actuator for vibration-driven robots. Such an exciter consists of a
rotor, the center of mass of which is shifted with respect to the axis of rotation.

In the system considered below, the normal reaction of the surface is controlled by means of an independently driven internal mass that
moves along the vertical. The special case of zero acceleration of this mass corresponds to the optimal control problem solved previously9

for a system with one internal mass.

1. The mathematical model of the system and the statement of the optimal control problem

Consider a mechanical system consisting of a rigid body (the main body) of mass m0 and two internal bodies (point masses) of mass m1
and m2 (see the figure). The main body moves translationally along a straight line on a rough horizontal plane. The internal bodies move
relative to the main body in a vertical plane parallel to the line of motion of the main body. Body m1 moves in a horizontal direction, while
body m2 moves along the vertical. There is dry (Coulomb) friction acting between the main body and the supporting plane. For the system
described, we will solve the optimal control problem for periodic motions of the internal bodies to maximize the average velocity of the
main body.

We introduce in the vertical plane, in which the internal bodies move, two right-handed rectangular coordinate frames—a fixed (inertial)
frame Oxy and the coordinate frame O′�1�2, rigidly attached to the main body. The x- and �1- axes are horizontal, while the y- and �2-axes
are directed vertically upward. The line OO′ is horizontal. Without loss of generality we will assume that body m1 moves along the �1-axis
and body m2 moves along the �2-axis. Let x denote the abscissa of the point O′ in the coordinate frame Oxy (the displacement of the main
body relative to the fixed reference frame), let �1 and �2 denote the abscissa of body m1 and the ordinate of body m2, respectively, in
the coordinate frame O′�1�2, let M = m0 + m1 + m2 be the total mass of the system, let k be the dry friction coefficient and let g be the
acceleration due to gravity.
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The motion of the main body along the x-axes for specified motions of the internal bodies is governed by the relations

(1.1)

(1.2)

(1.3)

where F is the dry friction force that obeys Coulomb’s law and N is the normal pressure force.
It is assumed that the main body is in permanent contact with the plane and, hence,

(1.4)

This inequality imposes a constraint on the admissible values of the relative acceleration of body m2.
We will consider periodic motions of the internal bodies with a given period T that excite velocity-periodic motion of the main body,

i.e.,

(1.5)

Due to the periodicity, it suffices to consider the motion in the interval [0, T]. Without loss of generality, we put

(1.6)

These relations can be satisfied by an appropriate choice of the reference points for measuring the coordinates and time.
As regards the last condition of (1.6), note that the velocity of the main body ẋ necessarily vanishes at some instant of time. Indeed,

since ẋ and �i are periodic functions of time, ẍ and �̈i are periodic functions with zero means. According to the equation of motion (1.1), the
friction force F is also a periodic function with zero mean and, hence, is alternating. Therefore, the velocity ẋ, which changes continuously
with time, cannot be constant in sign and, hence, vanishes at some instant of time.

Using relations (1.5) and (1.6), we define the boundary conditions in the interval [0, T]:

(1.7)

(1.8)

We assume that due to the restricted powers of the drives, the magnitudes of the relative accelerations of the internal bodies, �̈1 and
�̈2, do not exceed the values A1 and A2, respectively. Then, in view of inequality (1.4), we obtain the constraints

(1.9)

To enable the main body of the system to be moved from a state of rest, it is necessary to subject the parameters of the system to the
condition

(1.10)

We introduce the dimensionless variables

(1.11)

where L is an arbitrary parameter that has the dimension of length.
In what follows, the primes denoting dimensionless variables are omitted and the dot stands for a derivative with respect to the

dimensionless time t′.
We will seek the motions of the internal bodies which maximize the average velocity of the system for fixed T or, which is the same,

the displacement of the main body draining this period.
The quantities u1 and u2 are treated as the control variables. Since ui is proportional to the second derivative of the periodic function

�i, the functions ui have zero means over the period T. Conversely, if this condition holds, the periodic functions �i(t), which satisfy the
condition �i(0) = 0, are uniquely found in the form

(1.12)

Thus we arrive at the optimal control problem.
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Problem 1. For the system

(1.13)

subject to the boundary conditions

(1.14)

it is required to find controls u1(t) and u2(t) that satisfy the constraints

(1.15)

(1.16)

where

(1.17)

and maximize the quantity x(T):

Relations (1.13) were obtained from (1.1)–(1.3), conditions (1.14) from (1.8), and relations (1.16) and (1.17) correspond to (1.9) and (1.10).

2. Properties of the optimal motion

In this section, a number of propositions concerning the properties of the optimal motion and the structure of the optimal control law
for Problem 1 are proved. The controls ui that satisfy constraints (1.15) and (1.16) and the condition ẋ(T) = 0, if ẋ(0) = 0, will be referred to
as admissible controls.

Proposition 1. For the optimal controls, the main body of the system moves forward or remains in a state of rest but never moves backward:

(2.1)

Proof. Assume the contrary. Let u1(t) and u2(t) be admissible controls for which the velocity ẋ of the main body is negative (ẋ < 0) in
some interval (t1, t2) ⊂ [0, T] and vanishes at the ends of this interval: ẋ(t1) = ẋ(t2) = 0. From relations (1.13) and the inequality ẋ < 0 it
follows that the motion of the main body in the interval (t1, t2) is governed by the equation

Integrating this equation in the interval [t1, t2] and taking the conditions ẋ(t1) = ẋ(t2) = 0 into account we obtain the following relations
between the average values ūi of the functions ui:

We introduce the new control functions

These functions satisfy the constraints (1.15) and (1.16), since these constraints are satisfied by the original controls u1(t) and u2(t). �

For the new controls, the main body of the system remains at rest in the time interval [t1, t2], while in the remaining portion of the
interval [0, T] it moves with a velocity identical with that corresponding to the original controls. Since, by assumption, the velocity of the
main body is negative in the interval (t1, t2) for the original controls and is equal to zero for the new controls, the new controls provide a
larger value of the variable x(T). Hence, the original control is non-optimal, and for the optimal control, the velocity of the main body is
non-negative in the entire interval [0, T].

Proposition 2. Let us(t) be admissible controls such that ẋ ≥ 0 for t ∈ [0, T]. Then admissible controls ûs(t) and some � ∈ [0, T] exist for which
the following relations are satisfied

(2.2)

and drive the main body at the instant T to the same position as the controls us(t) do.
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Proof. The controls us(t) generate the representation of the half-open interval [0, T) as the sum of non-intersecting half-open intervals
�k

� = [tk
�, t̃k

�), where � = +, 0 for the intervals in which ẋ > 0 almost everywhere and ẋ ≡ 0, respectively:

At the ends of the intervals �i+, the velocity ẋ vanishes. Let � denote the total length of the intervals �i+. Consider the piecewise linear
one-to-one mapping of the interval [0, T] onto itself

where the constants ck
� are chosen so as to satisfy the condition

Define the controls ûs(t) as follows:

Together with this relation, the mapping �(t) “shuffles” the time intervals together with the control laws defined in these intervals. The
displacements of the main body are the same for the intervals �k

� and �(�k
�) and, hence, the final positions of the main body for the

controls ûs and us(t) coincide. By construction, the controls ûs(t) satisfy relations (2.2). This completes the proof of Proposition 2. �

Propositions 1 and 2 enable the class of admissible controls to be restricted to the functions us(t) that generate the motions for which
relations (2.2) are satisfied.

Proposition 3. Let u∗
1 and u∗

2 be the optimal controls that solve Problem 1 and such that ẋ > 0 almost everywhere in [0, �∗] and ẋ ≡ 0 in [�∗, T].
Then the optimal controls in the interval [0, �∗] have the form

(2.3)

(2.4)

Proof. Let the optimal control u∗
2(t) be fixed in the interval [0, T]. Consider controls u1 that have the form

satisfy the constraints of Problem 1 and ensure that the relations ẋ(�∗) = 0 and ẋ > 0 are satisfied almost everywhere in the interval (0, �∗),
subject to the initial condition ẋ(0) = 0. �

The controls u1 under consideration ensure that the relation x(�∗) = x(T) is satisfied . Therefore, the control u∗
1, t ∈ [0, �∗], is a solution

of the following optimal control problem: for the system

(2.5)

subject to the boundary conditions

(2.6)

it is required to find the control u1(t) that satisfies the constraints

(2.7)

(2.8)

and maximizes x(�∗), i.e.,

(2.9)

From Eq. (2.5) and boundary conditions (2.6) it follows that

Hence, condition (2.8) always holds.
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We apply the maximum principle to problem (2.5)–(2.7) and (2.9) to prove that the optimal control u∗
1(t) has the form (2.3). In a similar

manner, one can prove that the optimal control u∗
2(t) has the form (2.4).

3. Construction of the optimal control

In accordance with the above observations, we will seek the optimal controls u∗
i

in the class of functions

(3.1)

These functions must satisfy the conditions of the optimal control problem and the corresponding motion of the main body must be
characterized by the relations ẋ(0) = 0 and ẋ > 0 almost everywhere for t ∈ (0, �), and ẋ ≡ 0 for t ∈ [�, T].

The control functions fi(t) in the interval [�, T] must satisfy the constraints

(3.2)

(3.3)

and the inequality

(3.4)

which ensures rest of the main body, ẋ ≡ 0, in the interval [�, T], provided that ẋ(�) = 0. If relations (3.2)–(3.4) hold for the functions fi(t),
they also hold for the averages of these functions. Therefore, we can confine ourselves to the class of constant functions fi.

Thus, the controls ui are specified parametrically and the solution of the optimal control problem can be reduced to the determination
of the optimal values of the parameters �1, �2, �, f1, and f2, maximizing the quantity x(T). We will derive the conditions which must be
satisfied for these parameters.

The motion of the main body in the interval [0, �] is described by the equation

(3.5)

subject to the boundary conditions ẋ(0) = ẋ(�) = 0, by virtue of which the following integral relation is satisfied

Substituting the control law of (3.1) into the last relation we obtain the following relation between the parameters �1, �2, and �:

(3.6)

Expressing the parameters f1 and f2 in terms of �2 and �, using relation (3.3), the control law (3.1), and the relation between the
parameters (3.6), we obtain

(3.7)

Inequalities (3.2) and (3.4) for fi are transformed into inequalities for �2 and �

(3.8)

(3.9)

(3.10)

These inequalities, combined with the conditions �1 ∈ [0, �], �2 ∈ [0, �], and � ∈ [0, T] define the admissible domain for the parameters �2
and �. The system of inequalities for this domain can be reduced to the form

(3.11)

(3.12)

(3.13)
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(3.14)

Relation (3.11) is the right-hand inequality of (3.8). The left-hand inequality of (3.8) holds, since �2 ≤ � ≤ T and U−
2 ≤ 1. Relation (3.12)

is a transform of inequality (3.9). Relation (3.13) is equivalent to inequality (3.10) for T ≥ 0.
We will calculate the displacement of the main body of system x(T) as a function of the parameters �2 and �. Since ẋ ≡ 0 in the interval

[�, T], we have the equality x(�) = x(T). Solving Eq. (3.5), governing the motion of the main body, subject to the controls (3.1) and the initial
conditions x(0) = 0 and ẋ(0) = 0, taking into account relation (3.6) between the parameters �i, we obtain

(3.15)

Hence, the solution of the optimal control problem is reduced to maximizing the function (3.15), quadratic in �2 and �, in the convex
polygon of admissible values of �2 and �, defined by inequalities (3.11)–(3.14). Provided condition (3.14) is satisfied, the quantity x(T)
increases monotonically as � increases in the domain of admissible values of �2 and �, and x(T) reaches a maximum on the boundary of
this domain.

4. Limiting cases

We will calculate the maximum value of the average velocity of motion of the main body

in two limiting cases, U2 = ∞ and U2 = 0. In the first case, the function u2(t), characterizing the control of the motion of the internal mass
in the vertical direction, has no upper limit. In the second case, u2(t) ≡ 0 and, hence, there is no motion of the internal mass along the
vertical.

Case 1. U2 = ∞. In this case, U−
2 = 1 in accordance with the first relation of (1.17). From the system of inequalities (3.11)–(3.14) it follows

that �2 → � as U2 → ∞. For any �2 = � and � ∈ [0, T], this system of inequalities is satisfied in the limit as U2 → ∞. Substituting �2 = � = T
into expression (3.15) we obtain

(4.1)

We will show that this solution is optimal. To that end, consider the following auxiliary optimal control problem.

Problem 2. For the equation ẍ = u1 + f , subject to conditions (1.14), it is required to find the controls u1(t) and f (t) that satisfy conditions
(1.15), (1.16), and

(4.2)

and maximize the quantity x(T):

The quantity f in Problem 2 can be regarded as the dry friction force generated by the normal pressure force, the magnitude of which
ranges from 0 to ∞ and is treated as the control function. Thus, this problem deals with the system controlled by the internal mass along
the horizontal and by an external force along the vertical. Problem 2 can be obtained from Problem 1 for U2 = ∞ by omitting the integral
constraint of (1.15) for u2. Therefore, the maximum value of x(T) in Problem 2 is not less than the maximum value of x(T) in Problem 1 for
U2 = ∞.

Proposition 4. The optimal control in Problem 2 has the form

and the corresponding value of the performance index is given by expression (4.1).

Proof. Propositions 1–3, proved above for Problem 1, remain valid for Problem 2. Since ẋ > 0and, hence, f ≤ 0, almost everywhere in the
interval [0, �], maximum of x(�) for fixed u1(t) is reached for f ≡ 0 in the interval t ∈ [0, �). �

We will find the optimal control u1(t) in the interval [0, �] for f ≡ 0. According to Proposition 3, u1 = U1sign(�1 − t). From constraint
(1.15) for u1 it follows that �1 ≤ T/2. By choosing �1 so as to maximize x(�) we obtain
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The integral relation of (1.15) for u1 can be satisfied by letting u1 = U1sign(T/2 − t) for t ∈ [0, T]. The state of rest of the main body for
t ∈ (T/2, T] can be ensured by an appropriate choice of the function f, since the conditions of Problem 2 allow the main body to be decelerated
instantaneously to a complete stop and to be kept in a state of rest indefinitely due to the choice of this function. Since the function x(�)
increases monotonically, the optimal control corresponds to � = T . This completes the proof of Proposition 4.

This proposition implies the optimality of the solution �2 = � = T and x(T) = U1T2/4 for the limiting case U2 = ∞ of Problem 1. From
relation (3.6) we find �1 = T/2. Thus, the optimal control parameters �1, �2, and � are given by

and the interval [�, T], in which the main body remains at rest, degenerates to the point t = T . The optimal control u1 has the form

(4.3)

In the half-open interval [0, T), the optimal control u2 is defined as u2 = −U−
2 = −1.

According to the second relation of (3.7), in the case when U−
2 = 1 we obtain

For �2 = � and � → T , we have

This means that the optimal control u2(t) contains on impulse component of intensity T, represented by the Dirac delta function T�(t − T),
concentrated at the instant of time T and, finally, has the form

(4.4)

For this control, the normal pressure force exerted by the main body on the plane is zero in the half-open interval [0, T) and, hence, the
friction force is zero in this interval, i.e., f ≡ 0.

The optimal motion of the main body is described by the relations

(4.5)

(4.6)

This motion, being periodically extended to the infinite time interval [0, ∞), is velocity stable. Specifically, if the velocity of the main
body is non-zero at the initial instant of time, i.e., ẋ(0) = ẋ0 �= 0, and the system is subjected to the optimal controls of (4.3) and (4.4), the
body will reach the velocity-periodic motion mode of (4.5) in a finite time.

In fact, the integration of Eq. (1.13) gives

Since f (t) ≡ 0 for t ∈ [0, T) and the second term on the right-hand side of this relation is equal to zero in accordance with condition
(1.15), the velocity of the main body at the instant t = T − 0, just before the action of the impulse component of the control u2, is equal to
its initial value: x(T − 0) = x0. The impulse component of the control u2, in accordance with expression (1.13) for f, generates an impulse of
the friction force that instantaneously reduces the magnitude of the velocity of the main body by an amount kT, if kT < |ẋ0|, or brings it to
a complete stop, if kT ≥ |ẋ0|. Therefore,
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and, hence,

where the function int denotes the integer part of its argument. Consequently, from the instant t∗, the motion follows the velocity-periodic
mode (4.5).

We will obtain the motion of the internal masses corresponding to controls (4.3) and (4.4). From relations (1.12) we obtain

Then the vibration amplitudes of the internal masses are expressed as

(4.7)

Let the vibration amplitudes of the internal masses be constrained as follows:

(4.8)

We will vary the period T to maximize the average velocity V for these constraints on the amplitudes. By solving relations (4.7) and (4.8)
for T we obtain an expression for the maximum possible period and then, using expression (4.6), we find V:

For any specified values of the maximum amplitudes L1 and L2 allowed for the vibration of the internal masses, the quantity V increases
without limit as U1 → ∞. Hence, an arbitrarily high average velocity can be ensured in principle for the system, provided the drives are
powerful enough.

Case 2. U2 = 0. In this case, which has been studied in detail previously,9 there is no motion of the internal mass along the vertical. Taking
into account the inequality U1 > k, implied by the second relation of (1.17), relations (3.11)–(3.14) reduce to the inequality �2 ≤ � ≤ T/2,
while the switching instant �1 and the displacement of the main body during the period are calculated from the formulae

From these relations, the optimal parameters of the control law, the maximum displacement of the main body during the period, and
the average velocity of the optimal motion are defined by the expressions

(4.9)

In the first half of the period, the main body moves forward, speeding up with an acceleration of U1 − k in the interval [0, �∗] and slowing
down with an acceleration of −U1 − k in the interval [�∗, T/2]; in the second half of the period, the main body remains at rest.

The average velocity of the system has been calculated9 for the control law cited above, with the period T at which the vibration amplitude
of the internal mass is equal to the prescribed value L1. It has been shown that this velocity tends to infinity as the maximum acceleration
U1 allowed for the internal mass increases without limit. Moreover, the stability of the velocity of the main body in the optimal motion
with respect to the initial perturbation of this velocity has been proved. Unlike the case when U2 = ∞, the perturbed velocity reaches the
optimal mode in a finite time only when ẋ0 > 0, while when ẋ0 < 0, the convergence is exponential.

The ratio of expression (4.6) to the last expression of (4.9) for the average velocities of the system for fixed T in the cases U2 = ∞ and

U2 = 0 equals
4U2

1
U2

1
−k2 . Therefore, for given total mass of the system and the constraints on the relative acceleration of the internal mass

moving horizontally, the control of the normal pressure by means of the motion of the internal mass along the vertical makes it possible
in principle to obtain at least a 4-fold increase in the average velocity of the motion, as compared with the maximum average velocity of
motion of a system in which there is no internal mass moving along the vertical.
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